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ABSTRACT 

We prove that a convex set C is a polytope if and only if C is not the union 
of any strictly increasing sequence of convex sets. In addition, we attempt 
(with partial success) to characterize, in intrinsic geometric terms, those con- 
vex subsets C of a convex set X such that C is not the intersection of any 
strictly decreasing sequence of convex subsets of X. 

Introduction 

For  a convex set X in a real vector space, let C(X) denote the class of  all convex 

subsets of  X, U(X) the class of  all unions of  strictly increasing sequences in C(X), 

and I(X) the class of  all intersections of  strictly decreasing sequences in C(X). Let 

U'(X) = C(X) ~ U(X) and I ' (X) = C(X) ~ I(X). Though not very natural from 

a purely geometric viewpoint, the consideration of these subclasses of  C(X) does 

arise naturally in studying the complete lattice formed by C(X) with respect to set- 

theoretic inclusion. The purpose of the present note is to describe the subclasses 

U(X) and I(X) (or, equivalently, U'(X) and I '(X)) in geometric terms, especially 

when X is a finite-dimensional flat. The main results are stated below. 

THEOREM l. A convex set is a polytope if  and only i f  it is not the union of 

any strictly increasing sequence of convex sets. 

THEOREM 2. l f  X is a finite-dimensional convex set and CeI ' (X) ,  then the 

closure of C is the intersection of a polyhedron with the closure of X. I f  X is a 

quasipolyhedron then so is C. 

Polytopes, polyhedra, and quasipolyhedra are defined in the next section. 
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THEOREM 3. I f  X is a finite-dimensional flat and C~C(X), then C~I ' (X)  i f  

and only i f  every class in C( X) whose intersection is C admits a finite subclass 

with the same intersection. 

THEOREM 4. A subset of the plane R 2 belongs to I'(R 2) i f  and only if  it is of 

the form Q u S kr V, where Q is an open convex n-gon (not necessarily bounded), 

S is the union of n open segments or rays properly contained in the respective 

open edges of Q, and each point of V is a vertex of Q which is an endpoint of 

two of the segments or rays forming S. 

The figure below depicts a typical member of/ '(RE). 
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A constructive characterization of I ' (R 3) is also obtained. It is stated as Theorem 

5 and appears at the end of the paper. 

The author is indebted to George Sicherman for some comments which led to 

consideration of the problems studied here, and to the Office of Naval Research 

for partial support of this research. 

Definitions 

As the terms are used here, a polyhedron is the intersection of a finite number of 

closed halfspaces in a finite-dimensional real vector space, while a polytope is the 

convex hull of a finite set of points. It is known that the polytopes are precisely 

the bounded polyhedra. A face of a convex set C is a convex subset F of C such 

that F contains the closed segment Ix, y] whenever x and y are points of C for 

which F intersects the open segment Ix, y[. The (d - 1)-dimensional faces of a d- 

dimensional polyhedron are called its facets. It is known that the polyhedra are 
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precisely the finite-dimensional closed convex sets which have only finitely many 

faces, and that each face of a polyhedron is a polyhedron. For  the elementary 

aspects of facial structure and polyhedra which are used here without explicit 

reference, see the introductory portions of [1] and [4]. 

A convex set is here called a quasipolyhedron provided that the closure of  each 

of  its faces is a polyhedron. Note that this applies to the set itself, as it is a face 

of  itself. It is easily seen that a quasipolyhedron has only finitely many faces, each 

of which is a quasipolyhedron (Proposition 3). 

When X is a convex subset of  a finite-dimensional real vector space, the relative 

interior of X, denoted by rint X, is the interior of X relative to the smallest flat 

containing X. The set r in tX is nonempty whenever X is nonempty, convex and 

finite-dimensional. The relative boundary of  X, denoted by rbd X, is the set 

(cl X) ~ (rint X). The relative interior of a polyhedron P is called an open 

polyhedron, and the relative interiors of P 's  faces are the open faces of  r intP.  

A semispace in a flat A is a set which, for some point p of  A, is a maximal convex 

subset of  A ~ (p). The basic references on semispaces are [2] and [3]. 

Proof of Theorem 1 

Let C be a convex subset of a real vector space. I f  C is a polytope then C is the 

convex hull con Y of a finite set Y. For  any increasing sequence C~ c C2 c ... 

o f  convex sets whose union is C, there exists m such that Cm ~ Y. But then C~ = C 

for all n > m, and the sequence is not strictly increasing. That settles the "only  

i f "  part. 

For  the " i f "  part, let us assume that C is not the union of any strictly increasing 

sequence of  convex sets. It is easily seen that Cis finite-dimensional and bounded, 

whence cl C is compact. For  each extreme point p of cl C there is (by a well-known 

result) a sequence Q1,Q2,'" of closed halfspaces such that (Qn nc lC)~=l  is a 

strictly decreasing sequence whose intersection is (p}. But then p e C, for other- 

wise (C ~ Q~)~= 1 is a strictly increasing sequence of  convex sets whose union is C. 

With ext C c C, we have 

C c cl C = con ext cl C ,-" con ext C c C, 

where the equality follows from another well-known result. But then C = con ext C, 

and to complete the proof  it suffices to observe that ext C is finite. Indeed, if 

Pl,Pz, "'" are distinct extreme points of  C and if C, = C ~ {P,,Pn+I, "'" }, then 

(C,),~ ~ is a strictly increasing sequence of  convex sets whose union is C. 
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COROLLARY For any convex set X the class U(X) tdl(X) is equal to 

C(X) when X is not a polytope 

~ C(X) ,- {X} when X is a polytope of dimension ~ > 1 
! 
L~J when X is empty or consists of a single point. 

PROOF. Use Theorem 1 in conjunction with the fact that if dim X > 1 then 

P ~ I(X) for every polytope P contained in and not equal to X. 

P r o o f  o f  T h e o r e m  2 

With K = X in condition (al), the following result settles the first part of The- 

orem 2. With K = X in condition (a2), it is used in proving the second part of 

Theorem 2. 

PROPOSITION 1. Suppose that C and K are finite-dimensional convex sets, that 

(al) C c K 

o r  

(a2) K is a maximal convex subset of the relative boundary of a face F of C, 

and that 

(b) C is not the intersection of any strictly decreasing sequence of convex sub- 

sets of C ~3 rint K. 

Then 

(c) the set cl(C (~K) is the intersection of clK with a polyhedron. 

Further, 

(d) dim (C n K) = dim K 

i f  dimK >= 1, (b) holds, and either (al) holds or (a2) holds with F = C. 

PROOF. We first show that (d) holds under the stated hypotheses. It is easily 

verified that these hypotheses imply the existence of a point c ~ C N K. Suppose 

that (d) fails, whence the set C ~ K lies in a flat H which does not contain tint K. 

Choose k e (rint K) ,-~ H and for each n let 

cn con(C {nl 1 }) = c + - - k  . 
n n 

It is easily verified that 

C n = C w c o n ( ( C  nK u{n 1 1})  
- -  c + - - k  c C t d r i n t K  

n n 
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and that (C,),~ 1 is a strictly decreasing sequence of convex sets whose intersection 

is C. The contradiction yields the desired conclusion. 

In establishing (c), we may assume that dim(C n K)__> 2. Let M denote the 

class of all maximal convex subsets of rbd(C n K), and note that ( r in tM0 

n (rintM2) = ~ for any two distinct members M1 and M2 of M. Let M'  denote 

the class of all M e M such that M intersects rint K, and note that r in tK = r intM 

for all M E M'. Let M" denote the class of all M e M'  for which C :b rintM. We 

claim that the class M" is finite. Indeed, if M1, M2,"-  is a sequence of distinct 

members of M" and if 

C , =  C U ( 0  rintM/), 
i = n  

then (C,)? is a strictly decreasing sequence of subsets of C w r in tK whose inter- 

section is C. Further, each set C, is convex, and the resulting contradiction implies 

that M" is finite. 

Since each summand of C, is convex, it suffices in proving the convexity of (7, 

to show that if x e r i n t M i  with i > n ,  then ] x , y [ c C ,  for all yeCn. When 

yeclMi  we have ] x , y [ c r i n t M i c  C,. Suppose, on the other hand, that y 

C, ~ cl M i. I f  (al) holds then -Ix, y[ c rint C c C,. I f  (az) holds and y r K then 

Ix, y] = (rint C) w (rintV)= C,. 

In the remaining case, (a2) holds and y e (C n K) ~ clMi, whence 

Ix, y[ = rint (C n K)=  C,. 

Having shown that M" is finite, we define 

B = (rbd (C n K)) n (rint K) 

and will proceed to show that B c t.) M". Supposing the contrary, let 

U = B . ~ U M " # ~ J .  

Note that U is open relative to B and that every member of M intersecting U has 

its entire relative interior contained in C. Choose a member Mo of M which 

intersects U, and choose a point u e rintM0. Choose c e rint (C n K), and for each 

n let 

1 n + l  
k , =  - - - c +  u and C, = con (C w {k,}) , 

n n 

so that (C,)~= 1 is a strictly decreasing sequence of convex sets. As u e rintK, it is 
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true for all sufficiently large n that k, ~ rint K and thus C, c C u rint K. By hy- 

pothesis, then there exists a point 

q e ( 5  C , ) ~  C. 
t ) : l  

Plainly q e rint K. For each n there exist c. ~ (3 and 2. e [0, 1] such that 

q = (1 - 2,)c, + 2,,k,, 

whence the entire segment [q, q,] misses C and it follows that 

[q, u] c cl (C n K) ~ rint (C n K).  

Let affK denote the smallest fiat containing K. Then there is a flat H of deficiency 

1 in aft K which supports the convex set C n K at the point (q/2) + (u/2). The 

intersection C n H is a convex subset of rbd (C n K) which contains [q, u], and 

with u ~rintMo it follows that C n H  D {q} WMo. That contradicts the maxi- 

reality of Mo and shows that B c u M". 

Knowing, now, that M" is finite and B c U M", we proceed to choose, for 

each M e M", a closed halfspace QM in affK such that QM contains C n K and the 

bounding hyperplane of QM contains M. Then 

cl(C n K )  = (clK) n (nM~M. QM ). 

TO establish this, note that if co e rint(C n K), k e (rintK) ~ rint(C n K), p is the 

point at which the boundary of C is intersected by the segment ]Co, k[, and M is 

a member of M" which includes p, then k r QM. That completes the proof of 

Proposition 1. 

A slight modification of the above argument can be used to prove the following: 

PROPOSITION 2. Suppose that K is a convex subset of a topological linear 

space E, and that C e I '(K) with intC ~ ~ .  Suppose that every maximal convex 

subset of clC which intersects intK is either finite-dimensional or has nonempty 

interior relative to a flat of finite deficiency in E. Then clC is the intersection 

of clK with a finite number of closed halfspaces. 

To complete the proof of Theorem 2 we must show that ifX is a quasipolyhedron 

and C e I'(X), then C is a quasipolyhedron. Suppose that X is d-dimensional, and 

for 0 < k _< d let Ak denote the assertion that each k-dimensional face of C has 

polyhedral closure. Then Ao and A1 are trivially correct, while Aa follows from 

Proposition 1, using (al) with K = X. Now consider a k with 1 < k < d, supposing 
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that A~ is known whenever k < I < d, and consider an arbitrary k-dimensional 

face G of C. Let F denote the smallest face of C that properly contains G, whence 

elF is a polyhedron by the inductive hypothesis. Let K denote the facet of clF 

which contains G. It then follows from Proposition 1, using (a2), that the set 

cl (C c~ K) is the intersection of cl K whith a polyhedron. As cl (C n K) = cl G, 

while K is itself a polyhedron, we conclude that cl G is a polyhedron and that Ak 
holds. 

The proof of Theorem 2 is now complete. 

Proof of Theorem 3 

Only the last conclusion of Proposition 3 will be used in proving Theorem 3. 

PROPOSITION 3. I f  X is a quasipolyhedron in a finite-dimensional flat A, then 

X has onlyfinitely many faces and each face of  X is a quasipolyhedron. Furt- 

her, X is the intersection of a countable number of sernispaces in A. 

PROOF. For the first assertion, let us suppose that X has infinitely many faces 

and let G be of minimum dimension among those faces of X which contain 

infinitely many faces of X. The set cl G is a polyhedron and, with the exception of 

G itself, each face of X that is contained in G lies in some facet of cl G. For each 

facet F of cl G, the intersection F n G is a face of X which, by the minimality of 

G, contains only finitely many faces of X. As clG has only finitely many facets, 

it follows that G contains only finitely many faces of X. That is a contradiction 

showing that the number of faces of X is finite. Since any face of a face of X is 

itself a face of X, it follows immediately from the definition of quasipolyhedron 

that any face of a quasipolyhedron is itself a quasipolyhedron. 

The second part of Proposition 3 is obvious when the dimension of the flat is 1. 

Suppose that it is known in the (d - 1)-dimensional case, and consider a quasi- 

polyhedron X in a d-dimensional flat A. Let J denote the smallest flat containing 

X. I f J  # A, the inductive hypothesis implies that X is the intersection of a count- 

able number of semispaces in J. Further, each such semispace is the intersection 

with J of a semispace in A, and J itself is the intersection of a countable number 

of semispaces in A. It follows, in this case, that X is the intersection of a countable 

number of semispaces in A. In the remaining case, J = A and we denote by 

F~,-.-,F, the facets of the polyhedron clX. For each i, let H~ and Q~ denote 

respectively the hyperplane containing F~ and the open halfspace which is bounded 

by H~ and contains the interior of X. For each i, the set X n H~ is a quasipoly- 
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hedron and hence by the inductive hypothesis is the intersection of a countable 

sequence S~, S~, ..., of semispaces in H i. With T~ -- S~ u Qi, the T~.'s (i = 1, . . . ,n, 

j -- 1,2, . . . )  form a countable class of semispaces whose intersection is X. That 

completes the proof of Proposition 3. 

The " i f "  part of Theorem 3 is obvious. For the "only i f"  part, we want to show 

that if C e / ' (E)  and if K is a class in C(E) whose intersection is C, then K admits 

a finite subclass with intersection C. Note that C is a quasipolyhedron by Theorem 

2, and hence by Proposition 3 is the intersection of a countable number of semi- 

spaces. It follows from Theorem 3.2 of [-3] that C is the intersection of a countable 

subclass K' of K, and then from the membership of C in I'  (E) that K' admits 

a finite subclass whose intersection is C. 

Proof of  Theorem 4 and statement of  Theorem 5 

If  E is a d-dimensional real vector space, with d _-> 2, and C ~ I'(E), then: 

(i) C is a d-dimensional quasipolyhedron; 

(ii) for each facet F of the polyhedron clC, the intersection C r~F is a (d - 1)- 

dimensional quasipolyhedron; 

(iii) C does not contain the entire relative interior of any facet of cl C. 

Assertions (i) and (ii)follow from Proposition 1, while (iii) is an easily verified 

direct consequence of the fact that C is not the intersection of any strictly decreas- 

ing sequence of convex subsets of E. 

When d -- 2 it follows from the preceding paragraph that each member C of 

/ ' (R E) is of  the form Q u S u V, where Q is an open convex n-gon, S is the union of  

n open segments or rays properly contained in the respective open edges of Q, and 

each point of V is an endpoint of a segment or ray forming S. In fact, either C's 

convexity or C's membership in I ' (R 2) is violated unless V is precisely as described 

in Theorem 3. Finally, it is a routine matter to verify that the sets described in 

Theorem 3 are all members of I'(R2). (The n-gons are, of course, not required to 

be bounded. In fact, the term convex n-gon in Theorem 2 means a 2-dimensional 

polyhedron having n facets. That is a plane when n = 0, a halfplane when n = 1, 

and a plane angle or the strip between two parallel lines when n = 2.) 

A similar (but considerably more detailed) argument yields the following result. 

THEOREM 5. A subset C of  R 3 belongs to I ' (R 3) i f  and only i f  C can be expres- 
sed in the form, 

C = P u Q u S U V u T U W ,  

where the summands are obtained in the following way: 
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P is an open 3-dimensional polyhedron with m open facets F1, "",Fro; 

Q is the union of m open convex polygons Q1,'",Qm, where Q~ is properly 

contained in Fi; 

let Jil, ..., J~(i) denote the open edges of Qi which lie in F i and let n = ~i~= 1 n(i); 

let K1, . . . ,K  r denote the 1-dimensional sets obtained by intersecting an edge of 

P with the closures of Qi and Q~, where Fi and Fi t are the facets of  P incident to 

the edge in question; let Ko denote the union of all onepointed sets obtained in 

the same way; 

S is the union of n open segments or rays S~, . . . ,  Sn~m), where S~ is properly 

contained in J~; 

each point V is a vertex of some Qi, belongs to the corresponding F i, and is 

an endpoint of two of the open segments or rays S'h; 

T is the union o f r  open segments or rays T1, "", T,, where T z is contained in 

(and may be equal to) r in tKt ;  let Y denote the set a f  all points y such that, 

for some l, y is an endpoint of both Tl and Kt; 

each point of W is a vertex of P or belongs to Ko u Y, the points of W being 

chosen so as not to disturb the convexity of  C. 

A more detailed description o f  W could be provided,  but it would render the 

statement o f  Theorem 5 even more complicated. 
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